
A Query Language for Logic Architectures

Anton Malykh and Andrei Mantsivoda

Irkutsk State University, Irkutsk, 664003, Russia

Abstract. In this paper we consider the impact of the Semantic Web
and logical means on a wide range of developers solving traditional tasks
on the WWW. How to make the ’elite’ logic tools acceptable for ordinary
developers? How to incorporate a wide range of users in the space of the
Semantic Web? These and some other questions are considered here and
certain proposals are made. In particular we are based on the concep-
tion of a logic architecture as a stratified description logic system, and
introduce an ontology query language working within logic architectures.

1 Introduction

The tools of the Semantic Web are successfully applied to solving a number
of problems, which demand sophisticated logical descriptions and strong logi-
cal inference ’engines’. On the other hand, there is a wide-spread opinion that
due to the complexity and heaviness of underlying logics, ontologies can not be
successfully applied to solving ’lightweight’ problems consisting mostly of ob-
ject processing. It is true that the existing ontology systems can not compete
with, say, data base management systems on this kind of tasks. And it is a pity,
because this does not allow the Semantic Web to have a significant impact on
’everyday’ web resources development, though it is very important if to keep in
mind the initial aims of the SW. If the overwhelming majority of practical ap-
plications have nothing in common with the SW, it is impossible to ’reorganize’
the Web by the SW’s elegant and strong conceptions and tools.

The high comprehension barrier between conventional developers and logics,
on which the SW is heavily based, is also a problem, because the things that
are done by the ordinary developers should be at least compatible with the
SW principles and add value to the SW environment. This means that while
producing new data, the conventional developer makes it in the form, which is
compatible with the logical formalisms and can be integrated in the SW context.

In [1] we consider a conception of a logic architecture, which in particular tries
to tackle the problem outlined above. The idea here is to stratify the general
logical formalism (e.g. a strong description logic like SHOIN (D)) in such a
way that (1) each stratum is responsible for a specific kind of tasks and/or users
(while the higher layers can be used for sophisticated and advanced knowledge
management, the lower layers can be employed by the wide range of users and
developers); (2) each stratum is supplied with special interfaces and program-
ming methods, which implement the scenarios of work within the stratum; (3)
the architecture is supplied with tools/formalisms, which work at each stratum

A. Pnueli, I. Virbitskaite, and A. Voronkov (Eds.): PSI 2009, LNCS 5947, pp. 294–305, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Query Language for Logic Architectures 295

and ’glue’ the strata together. Among the tools, which can work at each stratum,
a query language plays a key role. The basic feature of this language is to be
acceptable for the conventional developers.

In this paper we introduce a query language (named BoxQL), which meets
the conditions stated above. BoxQL is designed in the XPath-like style at the
both syntactic and operational levels, and looks familiar to many people. The
idea behind BoxQL is that it should have identical behavior at any level of the
logic architecture. BoxQL is intended for logic architectures, which are based
on SHOIN (D) [2] as a ’maximal’ logic. SHOIN (D) is attractive, because it
determines the semantics of the web ontology language OWL DL [3].

2 Preliminaries

The languages and logics we consider in this paper are used to describe the
worlds, which are habitats for objects (individuals like John, planet Jupiter and
this paper). Objects can be grouped in concepts (or classes like Mammals, Plan-
ets and Information resources). Objects are connected with each other through
object properties (or roles – like hasChild or spouse).

The languages describing the worlds are based on vocabularies. A vocabulary
is a structure V = 〈TC , TR, Id〉 in which TC , TR and Id are finite pairwise disjoint
sets. TC is called the set of concept types, and TR the set of relations. Id is the
set of individual names (identifiers). Each relation r ∈ TR is associated with a
non-negative integer σ(r), which is called the arity of r. TC and TR are partially
ordered in such a way that TC has a maximum element �, and the relations
with different arities are not comparable in TR.

Objects can have attributes (e.g. age or price). Attributes are assigned to
objects by datatype properties. The values of datatype properties are taken in
datatype domains (e.g. integers or strings). Knowledge about the worlds is stored
in various namespaces. In order to introduce namespaces and data types we aug-
ment the notion of a vocabulary in the following way. Let NS = {ns1, . . . , nsk}
be the set of namespaces and D = {d1, . . . , dm} the set of datatypes.

Definition 1 (A namespaced vocabulary). Let V = 〈TC , TR, Id〉 be a vocab-
ulary. Then VD

NS = 〈TC , TR, Id, NS, D〉 is a namespaced vocabulary with names
L = TC ∪ TR ∪ Id ∪ D, if the following conditions hold:

1. L is divided into k pairwise disjoint subsets L =
k⋃

i=1

Lnsi , such that Lnsi =

T nsi

C ∪T nsi

R ∪Idnsi∪Dnsi . To indicate that a name nm belongs to a namespace
nsi (that is, nm ∈ Lnsi), we write nsi :nm.

2. TR is divided into three pairwise disjoint sets T o
R, T t

R, and T d
R of object

properties, datatype properties and domain specific relations, respectively,
such that TR = T o

R ∪ T t
R ∪ T d

R.
3. TC contains a concept type cns for each ns ∈ NS.

296 A. Malykh and A. Mantsivoda

Informally, a concept type cns denotes the set of objects with names belonging
to the namespace ns. We assume that all cns belong to the initial vocabulary
V . Since we work in the context of SHOIN (D), we have σ(r) = 2 for each
r ∈ T o

R ∪ T t
R. The relations of T d

R can have arbitrary arities.

Definition 2 (A datatype domain). A datatype domain D = 〈D1, , . . . , ,
Dm;LD〉 is an algebra of the language LD, where each Di, 1 ≤ i ≤ m, is the set
of values of the datatype di.

Let |D| = D1 ∪ . . .∪Dm. We denote by TermD+T the set of all ground terms of
the language LD ∪ T t

R ∪ {.}, in which elements of |D|, T t
R and the dot ’.’ play

the role of constants. Term∗
D+T denotes the set of all finite sequences of elements

of TermD+T , that is, if v1, . . . , vk ∈ TermD+T then (v1, . . . , vk) ∈ Term∗
D+T .

Fig. 1. The world of people PW

Example 1. In figure 1 a simple world of people (PW) is introduced. The vo-
cabulary Vpeople of this domain consists of

TC = {Mammal, Female, Male, Person, Man, Woman, Employee},

with the order Woman ≤ Female ≤ Mammal, Man ≤ Male ≤ Mammal, Woman ≤
Person, Man ≤ Person.

TR = {spouse, hasChild, age, name, surname, position, income}

A Query Language for Logic Architectures 297

Id = {Ann, Marie, Mongo, Tom, Paul, Tim, Tongo, John}
Let us describe this world in two namespaces http://people/basic (in which
the basic terminology about people is defined), and http://people/tribe (con-
taining only data about two members of a tribe, named Mongogo and Ton-
goga), plus the datatype namespace http://www.w3c.org/2001/XMLSchema. For
these namespaces we use the shortcuts (prefixes) p, t and x, respectively. Then,
based on VPW with augmented T ′

C = TC ∪ {cp, ct, cx}, we can construct VD
PW :

NS = {p, t, x}, D = {x:integer, x:string}
T o

R = {p:spouse, p:hasChild}
T t

R = {p:age, p:name, p:surname, p:position, p:income}
T d

R = {+, > and other rels & ops of x:integer and x:string}
Idp = {p:Ann, p:Marie, p:Tom, p:Paul, p:Tim, p:John}
Idt = {t:Mongo, t:Tongo}, Idx = ∅

Definition 3 (The language of SHOIN (D)). If c ∈ TC then c is a named
concept of SHOIN (D). Named concepts are concepts. If a, b are concepts, id ∈
Id, r ∈ T o

R ∪ T t
R, p ∈ T d

R then a 	 b, a
 b, ¬a, ∃r.a, ∀r.a, ≤n r, ≥n r,
∃(x1, . . . , xn).p, ∀(x1, . . . , xn).p, {id} are also concepts. If r ∈ T o

R then ∃r′.a
and ∀r′.a are concepts, where r′ ∈ {r+, r−, r±}.

SHOIN (D) is a description logic, which is very close to the Web ontology
language OWL DL. The first S stands in its name for the basic logic ALC
augmented with transitive roles. In ALC the basic description logic constructs
(concepts, roles, disjunction
, conjunction 	, negation ¬ and role quantifiers)
are introduced. H stands for role hierarchies, O denotes objects, which can be
represented explicitly, I stands for inverse roles, and N for simple number re-
strictions. (D) means that datatype properties are also allowed.

3 BoxQL: A Query Language

BoxQL is designed in an object-oriented style: it considers the collections of in-
dividuals in ontologies as a network of interconnected objects (like in Fig. 1).
In [1] we introduce the notion of an object-oriented projection, which formally
describes such an understanding of an object network. OO-projections are sim-
ple sublogics of SHOIN (D). The nature of BoxQL is traversal: its queries are
’walking along’ the network of objects and collecting necessary data. This style
is familiar, intuitively easy and acceptable for many people, because it resembles
XPath, directory paths in file systems, and ’dotted’ expressions in the object-
oriented languages. On the other hand, BoxQL is upward compatible with more
sophisticated and elite logic techniques. And the queries in BoxQL are actually
’encoded’ formulas of SHOIN (D), though a flavor of logic is concealed in them.
Like in XPath the general structure of BoxQL queries is

step1[pred1]/.../stepk[predk]

where predicates in square brackets are optional. A BoxQL query produces a
sequence of objects or data values gathered in KB, which satisfy its conditions.

298 A. Malykh and A. Mantsivoda

Example 2. Let us take an example from PW. Imagine that we want to find a
spouse of some man who is 40 and has a grandson. Here is a BoxQL query

Query: @man/spouse[age = 40 and hasChild/hasChild[@man]]
Result: {Ann}

The main path @man/spouse of this query collects all man’s spouses, because
the value of a path is always the value of its rightmost step. The names of
classes are qualified in BoxQL with ’@’. The namespace p is assumed default,
thus its prefix is omitted. The predicate in the square brackets allows us to
select among the man’s spouses those persons who are 40 and for whom the
query hasChild/hasChild[@man] produces a non-empty sequence of objects.
Now let us compare the above query with the following one:

Query: @man/spouse[age = 40]/hasChild/hasChild[@man]
Result: {Tim}

Here we move along the same path as in the first query. But the result is dif-
ferent, because the main path now is @man/spouse/hasChild/hasChild and its
rightmost step gives Tim.

Note that the both queries can be expressed by the formulas of SHOIN (D):

1. ∃spouse−.Man 	 ∃age.{40} 	 ∃hasChild.∃hasChild.Man and
2. Man 	 ∃hasChild−.∃hasChild−.(∃age.{40} 	 ∃spouse−.Man)

We can see the fundamental difference between the queries and the corresponding
DL formulas. The DL formulas just describe the qualities of a searched object,
whereas the traversal queries show how to get it from scratch (this is why we
need to use the role inversions in the formulas). In practice, the style of writing
queries in BoxQL is closer to navigation over description graphs. BoxQL is based
on the idea that the user ’walks along’ the ontology objects’ network, and points
out, which data must be collected during this walk. For collecting necessary data
the user can employ the fields, like in the following example

Query: @p:person as Granparent/hasChild/hasChild
Result: {(Tim, Grandparent=John), (Tim, Grandparent=Ann)}

Now the solution contains not only the value of the rightmost step (Tim) but also
the value of the field Grandparent corresponding to Tim. The way of formulating
queries in BoxQL is also close to writing dotted expressions in OO programming
languages, though the dot itself serves in BoxQL as an analog of Java’s ’this’:

Query: age[. > 30]
Result: {40, 41, 42}

The result is a datatype sequence, and ’¿’ ∈ T d
R. We do not distinguish a constant

singleton (x) and the value x, so instead of [. > (30)] we can write [. > 30].
An atomic step ns:* selects all objects named within the namespace ns:

Query: t:*/name
Result: {"Tongoga", "Mongogo"}

A Query Language for Logic Architectures 299

An atomic step −ns:ro denotes the inverses of object properties:

Query: −hasChild
Result: {John, Marie, John, Ann, Tom}

Intuitively ’−’ means here that we move from children to parents. John occurs
twice, because he is the father of two persons. BoxQL also allows us to explicitly
use the names of objects like in

Query: &Tom/income
Result: {200, 300, 400}

Using sequences as steps we can combine the sets of elements like in the following
example, in which ’*’ stands for ’all objects’:

Query: (&john, @woman/t:*, *[income])/name
Result: {"John", "Mongogo", "Tom"}

The expression (h ! [r1]) implements in BoxQL the ∀–quantifier of DLs.
The next query selects individuals whose children are all boys (following the
semantics of ∀ in the DLs ! collects also individuals who do not have children):

Query: *[hasChild ! [@man]]
Result: {John, Ann, Marie, Paul, Tom, Tim, t:Tongo, t:Mongo}

Since DLs are based on the open-world paradigm, a BoxQL-query actually pro-
duces a sequence of objects, which are known to satisfy the query’s conditions.
Thus, we should be careful with the negation because its use in open knowl-
edge bases can set dangerous non-monotone traps. For instance, the query *[not
hasChild] asks to find those known objects, which are unknown to have children,
and further updates in the knowledge base can reduce the resulting sequence.
We do not put restrictions on the negation in the general formalism. There are
various ways how to tackle such problems, say, with the help of the epistemic
operator K (see [4], section 6.2.3). In particular, we can restrict the negation only
to those concepts c, the knowledge about which is complete, i.e. ¬Kc � K¬c.

4 The Semantics of BoxQL

First, we formally define the BoxQL syntax.

Definition 4 (BoxQL syntax). Let VD
NS be a namespaced vocabulary. We define

the sets of steps S, paths P and predicates R of BoxQL as follows:

1. The atomic steps of BoxQL are: (a) * ∈ S and ns:* ∈ S for each ns ∈ NS;
(b) if ns:c ∈ TC, then @ns:c ∈ S; (c) if ns:ro ∈ T o

R then ns:ro, -ns:ro ∈ S;
(d) if ns:rd ∈ T t

R then ns:rd ∈ S; (e) if ns:id ∈ Id, then &ns:id ∈ S.
2. S ⊆ P. If h ∈ P and s ∈ S then h/s ∈ P.
3. Term∗

D+T ⊆ S. If h1, . . . , hk ∈ P then the sequence (h1, . . . , hk) ∈ S. A
sequence is called constant if all hi ∈ Id.

300 A. Malykh and A. Mantsivoda

4. If s ∈ S and r ∈ R, then s[r] ∈ S.
5. P ⊆ R. RelD+T ⊆ R.
6. If h ∈ P, r1, r2 ∈ R and c is a constant sequence, then (r1 and r2), (r1

or r2), (not r1), (r1 = c), (h ! [r1]) belong to R.

A BoxQL-query is any h ∈ P . A BoxQL-query fetches basic data about objects in
the underlying knowledge base KB, in which BoxQL works. In other words, KB is
a parameter of BoxQL. The strength of KB depends on the stratum of the logic
architecture, in which BoxQL works at the moment.

Let VD
NS be a namespaced vocabulary and KB = 〈|KB|, |=〉 a knowledge base

of this vocabulary with the interpretation I : VD
NS �→ KB. |KB| is the set of

objects stored in KB. We assume that |= allows us to check whether ns:cI(o1),
ns:roI(o1, o2), ns:rdI(o1, v) are true for any o1, o2 ∈ |KB|, ns:c ∈ TC , ns:ro ∈
T o

R, ns:rd ∈ T t
R and v ∈ |D|. Predicates from RelD+T are also evaluated by |=.

The (naive) procedural semantics of BoxQL is defined in the form of calculi.
Note that the paths of BoxQL focus on collecting objects, while the predicates in
square brackets do the opposite work: they filter out the objects not satisfying
certain conditions. This means that we need to have separate, though mutually
defined, sub-calculi for paths and predicates, which are called the �-calculus and
the �-calculus, respectively. For technical reasons we treat a path h1/ . . . /hk

as if it is obtained from the empty path ε by the multiple applications of the
left-associative operator ’/’: (. . . (ε/h1)/h2)/ . . . /hk).

The derived objects of the �-calculus have the form h〈C〉, where h is a path
and C a finite sequence of elements from |KB|. We say that a sequence A is the
answer to a path h ∈ P on a sequence C (denoted h〈C〉 �� A), if there exists
a derivation sequence h〈C〉, h1〈C1〉, . . . , ε〈A 〉 such that ε is the empty path, and
every hi〈 Ci 〉 is obtained from the previous one by the application of some �-rule.
There are two possibilities: A ⊆ |KB| (the result is a sequence of objects), and
A ⊆ |D| (the result is a sequence of datatype values).

Let h ∈ P , r ∈ R, s ∈ S, o ∈ |KB|, x ∈ |KB| ∪ |D|, C ⊆ |KB|, A ⊆ |KB| or
A ⊆ |D|, ns:ro ∈ T o

R, ns:rr ∈ T o
R∪T t

R. For a ground formula f , |= f means that
KB ’knows’ that f is true, and �|= f means that KB ’knows’ that f is false. Here
are the rules of the �-calculus:

�
*/h〈 C 〉
h〈 C 〉 �

ns:*/h〈 C 〉
h〈 C ∩ {o | |= cI

ns(o)} 〉
�

ns:c/h〈 C 〉
h〈 C ∩ {o | |= ns:cI(o)} 〉

�
ns:rr/h〈 C 〉

h〈 {x | ∃o ∈ C : |= ns:rrI(o, x)} 〉 �
-ns:ro/h〈 C 〉

h〈 {o | ∃o′ ∈ C : |= ns:roI(o, o′)} 〉

�
s[r]/h〈 C 〉

h〈 {o | o ∈ C′ : s〈C〉 �� C′ and r(o) �� true} 〉 �
(x1, . . . , xk)/h〈A 〉
h〈A ∩ {xI

1, . . . , x
I
k} 〉

In the next �-calculus the derived objects are true and false, where true
denotes any non-empty set of elements and false is represented by ∅. To prove
that a predicate r ∈ R holds on an element (an object or a datatype value) x,
we need to derive r(x) �� true in the �-calculus, and to derive r(x) �� false,
if we want to refute it. The �-rules are:

A Query Language for Logic Architectures 301

�
h〈{x}〉�� {x1, . . . , xk} ∀i : r(xi)�� true

h ! [r](x)�� true
�

r1(x)�� res1 r2(x)�� res2

(r1 and r2)(x)�� res1 ∧ res2

�
h〈{x}〉�� {x1, . . . , xk} ∃i : r(xi)�� false

h ! [r](x)�� false
�

r1(x)�� res1 r2(x)�� res2

(r1 or r2)(x)�� res1 ∨ res2

�
r(x) �� res

(not r)(x) �� ¬ res
�

h〈{x}〉 �� A
(h = c)(x) �� A∩ cI

�
h〈{x}〉 �� A
h(x) �� A

�
∃ pe ↑x : |= pe ↑x

pe(x) �� true
�

∀ pe ↑x : �|= pe ↑x

pe(x) �� false

Here res, resi ∈ {true, false} and pe ∈ RelD+T . The first rule also applies if
k = 0. pe ↑x is obtained from pe by the substitution of all occurrences of the dot
’.’ by x, and if x is an object, by the substitution of property name occurrences in
pe with the values of these properties in x. Note that if x contains several values
of some property, there can be several such substitutions. ∃ pe ↑x :|= pe ↑x
means that there exists a substitution, which makes pe true.

Thus, we see that BoxQL is indifferent to the logical mechanisms working in
the knowledge base KB, because the procedural semantics of BoxQL uses its
checking tool |= as an oracle in a black box. This means that |= can be defined
in various ways: as an inference machine for SHOIN (D), ALC or whatever we
want. In section 6 we consider an experimental implementation, in which BoxQL
is used for queries in an object data base, in which |= is implemented as simple
check of explicit data. This means that BoxQL can work at any layer of the logic
architecture: ’lifting’ BoxQL through its layers preserves the compatibility and
semantics of the language. In particular this means that, if to be careful enough,
the queries that are asked on the lower layer of an object DB, are still valid on
the higher logical layers, which subsume this ODB.

Note that the last two �-rules show how to handle ordinary relations (=,
¡, ¿ etc.) with sequences as arguments. For instance, *[income = 300] selects
persons who have the income of 300. Tom has, but he has also incomes of 200 and
400. Thus, we have to check if {200, 300, 400} = 300. In such situations �-
rules check if there exist equal members in the both parts. Of course, sometimes
such behavior looks tricky, so BoxQL has special built-ins to treat the sequences
in different ways.

The computational complexity of BoxQL depends on the complexity of the
underlying KB: by adjusting the checking tools of KB we can find the necessary
ratio of the efficiency and expressiveness. We hope that this can make BoxQL
useful in various and very different situations.

5 Translation to DL

In this section we investigate the soundness of BoxQL. First, we show that each
BoxQL-query can be translated into a formula of SHOIN (D) (on the other hand,
not any SHOIN (D) formula can be translated into BoxQL).

To translate BoxQL-queries we augment SHOIN (D) with a concept non-
emptiness construct ∃c [2], which holds if the concept c is non-empty. Also to

302 A. Malykh and A. Mantsivoda

h/s P(h/s) r R(r)

ε (empty) � r1 and r2 R(r1) � R(r2)

h/* P(h) r1 or r2 R(r1) � R(r2)

h/ns:* cns � P(h) not r ¬R(r)

h/c (c ∈ TC) c � P(h) h ! [r] ∀P(h).R(r)

h/ro (ro ∈ T o
R) ∃ro−. P(h) h ∈ P ∃P(h)

h/-ro (ro ∈ T o
R) ∃ro. P(h) pe ∈ RelD+T ∃(x1, . . . , xk)pe

h/rt (rt ∈ T t
R) rt∗ � P(h) h = c P(h/c)

h/id (id ∈ Id) {id} � P(h)

h/(h1, . . . , hk) P(h) � (
k�

i=1
P(hi))

h[r] P(h) � R(r)

h/v (v ∈ |D|) {v} � P(h)

Fig. 2. The translation operators P(·) and R(·)

handle queries like */age resulting in sequences of datatype values, we intro-
duce a construct rt∗ for each datatype property rt ∈ T t

R. For any value v ∈ |D|,
|= rt∗(v) iff ∃o :|= rt(o, v). The connectives 	,
,¬ behave on ’datatype’ propo-
sitions as propositional conjunction, discjunction and negation, respectively. Fig-
ure 2 defines operators P and R, which translate paths and predicates, respec-
tively, into the formulas of SHOIN (D) augmented with these two constructs.

Let T be a SHOIN (D)-description of some world, and KBT a knowledge
base, in which |= is interpreted as SHOIN (D)-satisfiability in T . Then the
following proposition holds:

Proposition 1 (soundness). For any h ∈ P, if h〈|KBT |〉 �� A in KBT then
for each x ∈ A, P(h)(x) is satisfiable in KBT .

The proof of this proposition is established by induction on the length of a
derivation in �− and �−calculi.

6 Implementation and Evaluation

In this section we consider an implementation and evaluation of BoxQL based on
an experimental OntoBox module, which we are developing now in Java. In On-
toBox, |= is interpreted as an object DB explicit checker. BoxQL is implemented
in OntoBox in a naive style based on the �- and �-calculi. Also we verified
manually some ideas for compilation of BoxQL-queries.

To evaluate the approach, we checked (1) if BoxQL was adequate and reliable
for inexperienced developers, and (2) if it could compete with DB management
systems on the lower levels of object processing.

To achieve the first goal we had a number of experiments and questionnaires.
E.g. we worked with a group of 24 students. The tasks were to develop (after
one introductory lecture) reference systems for LaTeX, CSS, HTML, DOM, etc.
The students developed ontologies and the corresponding interfaces. 4 advanced

A Query Language for Logic Architectures 303

tasks were offered to the best students. 14 students were successful, 5 had minor
problems with interfaces, 3 had minor problems with BoxQL, 2 had problems
with both, 1 failed to solve his task. The questionary showed that in general
BoxQL was considered by students as simple and natural. 18 students think that
BoxQL is easier than SQL. We also asked the students to write the same queries
in SHOIN (D) and then compare the two styles. All of the students confirmed
that writing in BoxQL had been much easier (and more familiar) for them than
writing in SHOIN (D).

As a benchmark for the second goal we took the NCBI taxonomy database [5],
which describes the names of all organisms that are represented in the genetic
databases with at least one nucleotide or protein sequence. This taxonomy con-
tains 482960 objects. The taxonomy established in a database has been converted
into an ontology in which every name is an object of the class node, and the tree
structure is represented by the object property parent. In the experiments we
asked queries of the form parent/.../parent︸ ︷︷ ︸

n

searching for the chains of nodes.

Concurrently we asked the equivalent SQL-queries in the original database (in
MySQL):

select * from nodes where parent id in

(select id from nodes where parent id in

.
(select id from nodes))...);

⎫⎪⎪⎬
⎪⎪⎭

n

with indexed columns id and parent id of taxonomy nodes. Here are the re-
sults for Apple Mac OS X 10.5.6, Java 1.6.0 07 (64-Bit Server VM), and MySQL
5.0.51a (MySQL does not allow nestings for n > 32):

n = 1 5 10 20 30 40

number of collected chains 482959 471762 301503 135297 30736 280

MySQL 5.0.51a (sec) 5.02 42.34 83.25 130.24 148.56 n/a

BoxQL(naive, sec) 1.56 6.62 11.93 17.08 18.94 19.2

BoxQL(compiled, sec) 0.16 0.99 1.54 2.16 2.36 2.41

What we want to say by this example is that on the lower levels of the logic archi-
tecture we can develop the tools, which are quite good for ’simple’ but efficient
knowledge management (especially in object models), while staying compatible
(e.g. via the query language BoxQL) with much more expressive methods and
tools of the Semantic Web.

7 Related Work and Conclusion

In this paper a new approach to knowledge and data management is introduced,
which is targeted at conventional web developers, and based on (1) a new query
language designed in the XPath style and compatible with object oriented mod-
els; (2) a fast non-memory based implementation of this language.

304 A. Malykh and A. Mantsivoda

There are a lot of works, which are focused on the management of large
amounts of simple data in the context of the SW. Many researchers consider
incorporating the style of relational DBs as the basic way to efficiently han-
dle simple data within SW applications (e.g. see [6][7] etc.). We are convinced
that the SW itself can provide quite reliable tools, and ’hybridization’ with DBs
can be avoided in many cases. The solutions within the SW could be more el-
egant, coherent and profitable. Concerning the interactions between the object
oriented approach and the SW, paper [8] gives the informal case study of inter-
action between an OO programming language (represented by Java) and OWL.
We develop an OO-style query language based on a strictly formal approach,
which represents object oriented means as a sublogic of general DLs. In [9] in
order to represent structured objects (which are analogous to finite networks
of individuals), DL is augmented with description graphs. The basic difference
between the approaches is that our aim is to handle with BoxQL the networks
of concrete data, whereas in [9] the problem of graph-like object representation
is considered on the level of TBoxes. And for this the strength of DL is not
sufficient due to the well known tree model property [10].

A lot of query languages have been developed in the context of the SW (see
[11]–[18] etc). The basic features, which distinguish BoxQL from them is that it
is a traversal language based on the object oriented paradigm, in which triple
employing is hidden. E.g. in SPARQL [11] the query to find the capitals of all
countries in Africa looks as follows:

SELECT ?capital ?country

WHERE {

?x :cityname ?capital ;

:isCapitalOf ?y .

?y :countryname ?country ;

:isInContinent :Africa .

}

In BoxQL we have:

*[cityname as capital]/
isCapitalOf[countryname as country and isInContinent = &Africa]

The difference is clear. In SPARQL we have to divide the query into a number
of triples with auxiliary variables. In BoxQL we just determine a two-step walk
along the knowledge graph.

The approach considered in this paper raises a number of questions. Is it pos-
sible to use logic architectures and BoxQL for developing SW-technologies, which
can compete (and cooperate with) the standard methods of data management
(like DBs) on lower levels, but enjoy on the higher levels the full strength of
logic? Will such technologies be really interesting to a wider range of users?
Shall we manage to preserve compatibility between the lower and higher layers
of logical architectures in procedural data management environments? There are
no answers yet, but the initial steps look promising.

A Query Language for Logic Architectures 305

References

1. Malykh, A., Mantsivoda, A., Ulyanov, V.: Logic Architectures and the Object
Oriented Approach. Technical Report (2009)

2. Horrocks, I., Patel-Schneider, P.F.: Reducing OWL entailment to description logic
satisfiability. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS,
vol. 2870, pp. 17–29. Springer, Heidelberg (2003)

3. Horrocks, I., Hayes, P., Patel-Schneider, P.F.: OWL Web Ontology Language Se-
mantics and Abstract Syntax, http://www.w3.org/TR/owl-semantics/

4. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, Cambridge (2003)

5. The NCBI Entrez Taxonomy,
http://www.ncbi.nlm.nih.gov/sites/entrez?db=taxonomy

6. Hustadt, U., Motik, B., Sattler, U.: Reasoning in Description Logics by a Reduction
to Disjunctive Datalog. Journal of Automated Reasoning 39(3), 351–384 (2007)

7. Haarslev, V., Möller, R.: On the scalability of description logic instance retrieval.
Journal of Automated Reasoning 41(2), 99–142 (2008)

8. Puleston, C., Parsia, B., Cunningham, J., Rector, A.L.: Integrating Object-
Oriented and Ontological Representations. A Case Study in Java and OWL, pp.
130–145

9. Motik, B., Grau, B.C., Horrocks, I., Sattler, U.: Representing Structured Objects
using Description Graphs. In: KR 2008, pp. 296–306 (2008)

10. Vardi, M.Y.: Why Is Modal Logic So Robustly Decidable? In: Proc. DIMACS
Workshop. DIMACS Series, vol. 31, pp. 149–184.

11. Prudhommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Rec-
ommendation (2008)

12. Seaborne, A.: RDQL - A Query Language for RDF. W3C Member Submission
(2004)

13. Ortiz, M., Calvanese, D., Eiter, T.: Data Complexity of Query Answering in Ex-
pressive Description Logics via Tableaux. Journal of Automated Reasoning 41,
61–98 (2008)

14. Bry, F., Furche, T., Linse, B.: Data Model and Query Constructs for Versatile
Web Query Languages: State-of-the-Art and Challenges for Xcerpt. In: Alferes,
J.J., Bailey, J., May, W., Schwertel, U. (eds.) PPSWR 2006. LNCS, vol. 4187, pp.
90–104. Springer, Heidelberg (2006)

15. Kaplunova, A., Möller, R.: DIG 2.0 Concrete Domain Interface Proposal.,
http://www.sts.tu-harburg.de/~al.kaplunova/dig-cd-interface.html

16. Frasincar, F., Houben, G.-J., Vdovjak, R., Barna, P.: RAL: An Algebra for Query-
ing RDF. World Wide Web: Internet and Web Information Systems 7, 83–109
(2004)

17. Noy, N., Musen, M.A.: Specifying ontology views by traversal. In: McIlraith, S.A.,
Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 713–725.
Springer, Heidelberg (2004)

18. Ogbuji, C.: Versa: Path-Based RDF Query Language,
http://www.xml.com/pub/a/2005/07/20/versa.html?page=1

http://www.w3.org/TR/owl-semantics/
http://www.ncbi.nlm.nih.gov/sites/entrez?db=taxonomy
http://www.sts.tu-harburg.de/~al.kaplunova/dig-cd-interface.html
http://www.xml.com/pub/a/2005/07/20/versa.html?page=1

	A Query Language for Logic Architectures
	Introduction
	Preliminaries
	Metapost: A Query Language
	The Semantics of Metapost
	Translation to DL
	Implementation and Evaluation
	Related Work and Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

